English | 联系我们 | 加入收藏
搜索:
 
当前的位置:系所设置及师资 > 机械制造及自动化系 >师资队伍
  关注度:8565
姓    名: 马志超
性    别:
籍    贯: 黑龙江省尚志市
政治面貌: 中国共产党
学    历: 研究生
毕业学校: 吉林大学
所在系室: 机械制造及自动化系
职    称: 副教授
本信息更新时间为2017-04-14 19:35:15
定职时间: 2015年9月
 
现任职务:
 
社会兼职: 国际仿生工程学会会员、中国机械工程学会高级会员、吉林省材料服役性能测试产业公共技术研发中心副主任
 
电子邮箱: zcma@jlu.edu.cn
 
联系电话:
 
研究方向: 服役条件下材料失效机制与力学性能
主讲课程、教学情况:
主讲本科《机械制造技术基础》、《切削原理与数控刀具》;
主讲研究生《原位力学测试技术与装备导论》、《精密仪器设计与制造》;
承担典型机电产品构造实习、生产实习、毕业设计等;
指导国家级大学生创新创业训练计划建设项目、“挑战杯”全国大学生课外学术科技作品竞赛;
担任2013级工程试验班(卓越班)班主任;
担任机械学院青年科技工作者协会副主席.
个人经历(进修、留学):
2015/10至今,吉林大学,机械学院,机械制造及自动化系,副教授(破格);
2015/10至今,吉林省材料服役性能测试产业公共技术研发中心,副主任;
2015/04至今,工程仿生教育部重点实验室,博士后;
2014/07-2015/09,吉林大学,机械学院,机械制造及自动化系,讲师;
2014/01-2014/06, 中国电子科技集团公司,总体研究部,研发工程师;
2011/09-2013/12,吉林大学,机械学院,博士(提前毕业);
2009/09-2011/07,吉林大学,机械学院,硕士;
2005/09-2009/07,吉林大学,机械学院,本科/学士.
荣誉称号、学术兼职、科研奖获:
主要社会兼职:
国际仿生工程学会会员;
中国机械工程学会高级会员;
中国有色金属学会会员;
中国仪器仪表学会试验机分会会员;
吉林大学青年科技工作者协会会员;
主要社获奖及荣誉:
2016年吉林省技术发明奖项,一等奖,第二完成人;
2016年吉林大学“国家优秀青年科学基金”培育资助计划(校当年20人);
2015年度中国有色金属科技论文奖,二等奖,第一完成人;
2015年吉林省自然科学学术成果奖,三等奖,第一完成人;
2015年吉林大学优秀博士后(校当年20人);
2014年吉林大学优秀博士学位论文.
科研项目情况:
主持的科研项目:
国家自然科学基金(青年基金) (51505180), 2015.08-2018.12;
国家重大科学仪器设备开发专项(子课题) (2012YQ0300750105), 2015.06-2016.10;
中国博士后科学基金会面上项目(1等资助) (2015M580249), 2015.11-2017.10;
吉林省科技发展计划项目(青年基金)(20150520108JH), 2015.01-2017.12;
吉林省自然科学基金项目(公示), 2017.01-2019.12;
吉林大学优秀博士后项目, 2015.12-2017.10;
吉林大学“国家优秀青年科学基金”培育资助项目,2016.06-2017.06;
吉林大学青年师生交叉学科项目,2016.07-2017.07;
“挑战杯”全国大学生课外学术科技作品竞赛培育项目,2016.10-2017.09;
发表论文、著作情况:
近五年,在Mater. Design、J. Alloy. Comp、Acta. Mech、PRECIS. ENG、Rev. Sci. Instrum、Meas. Sci. Technol、Mater. Trans、Exp. Techniques、J. Cent. South. Univ、Instrum. Exp. Tech等刊物上发表SCI收录论文30余篇。申请欧洲及美国专利2件,获授权国家发明专利20余件,制定重点行业标准2项,参与撰写英文专著2章。研制的系列化材料性能测试仪器在北京大学、浙江大学等高校以及长春机械科学研究院有限公司等企业得到了实际应用。
发表论文情况(Published papers):
[1] Ma, Z. C., *Zhao, H. W., et al. (2016): Thermo-mechanical coupled in situ fatigue device driven by piezoelectric actuator. Precision Engineering, 46, 349-359.
[2] Ma, Z. C., *Zhao, H. W., et al. (2016): Fracture criterion on basis of uniformity of plastic work of polycrystalline ductile materials under various stress states. Acta Mechanica, 227, 2053-2059.
[3] Zhao, H. W., Zhong, Y. X., *Ma, Z. C. (2016): Effects of indentation depth on micro hardness and scratch behavior. Journal of Alloys and Compounds, 680, 105-108.
[4] Sun, X. D., *Zhao, H. W., Yu, Y., Zhang, S. Z., Ma, Z. C., et al. (2016): Variations of mechanical property of out circumferential lamellae in cortical bone. AIP Advances, 6, 115116.
[5] Ma, Z. C., *Zhao, H. W., et al. (2016): Measurement error of Young’s modulus considering the gravity and thermal expansion of thin films. Measurement Science & Technology, 27, 127001.
[6] Hou, P. L., *Zhao, H. W., Ma, Z. C., et al. (2016): Influence of punch radius on elastic modulus of three-point bending tests. Advances in Mechanical Engineering. 8, 1-8.
[7] Ma, Z. C., *Zhao, H. W., et al. (2016): Method for determining of true stress of cross-shaped specimens subjected to biaxial tensile loads. Instruments and Experimental Techniques, 59, 287-293.
[8] Ma, Z. C., *Zhao, H. W., et al. (2015): Evaluation of equivalent accumulation area of internal defects based on statistical law of yield loads. Journal of Alloys and Compounds, 649, 500-504.
[9] Ma, Z. C., *Zhao, H. W., et al. (2015): Deformation behavior of micro-indentation defects under uniaxial and biaxial loads. Review of Scientific Instruments, 86, 095112.
[10] Ma, Z. C., *Zhao, H. W., et al. (2015): A novel tensile device for in situ scanning electron microscope mechanical testing. Experimental Techniques, 39, 3-11.
[11] Ma, Z. C., *Zhao, H. W., et al. (2015): Modular correction method of bending elastic modulus based on sliding behavior of contact point. Measurement Science & Technology, 26, 087001.
[12] Ma, Z. C., *Zhao, H. W., et al. (2015): Critical Fracture Behavior of a Cu/Al Composite Laminate via the Observation of Scanning Electron Microscope. Materials Transactions, 56, 813-818.
[13] Ma, Z. C., *Zhao, H. W., et al. (2015): Prediction Method of Low Cyclic Stress-Strain Curve of Structural Materials. Materials Transactions, 56, 1067-1071.
[14] Ma, Z. C., *Zhao, H. W., et al. (2015): Effects of zinc on the static and dynamic mechanical properties of opper-zinc alloy. Journal of Central South University, 22, 2440-2445.
[15] Li, J. P., Zhao, H. W., Qu, X. T., Qu, H., Zhou, X. Q., Fan, Z. Q., Ma, Z. C. et al. (2015): Development of a compact 2-DOF precision piezoelectric positioning platform based on inchworm principle. Sensors and Actuators A, 222, 87-95.
[16] Ma, Z. C., *Zhao, H. W., et al. (2014): Influences of tensile pre-strain and bending pre-deflection on bending and tensile behaviors of an extruded AZ31B magnesium alloy. Materials & Design, 64, 566-572.
[17] Ma, Z. C., *Zhao, H. W., et al. (2014): Decomposition method based on a modified Arcan fixture and its application in an in situ combined load tester. Measurement Science & Technology, (2014) 25, 127001.
[18] Ma, Z. C., *Zhao, H. W., et al. (2014): Effects of 2D misalignment on tensile results and corresponding correction methods to obtain the true tress-train curve. Measurement Science & Technology, 25, 115011
[19] Zhang, L., *Zhao, H. W., Ma, Z. C., et al. (2014): Molecular dynamics simulation of linearly varying cutting depth of single point diamond turning on Cu (111). International Journal of Nanomanufacturing, 10, 33-357.
[20] Zhang, L., *Zhao, H. W., Yang, Y. H., Huang, H., Ma, Z. C., et al. (2014): Evaluation of Repeated Single Point Diamond Turning on the Deformation Behavior of Monocrystalline Silicon via Molecular Dynamic Simulations. Applied Physics A, 116, 141-150.
[21] Zhang, L., *Zhao, H. W., Guo, W. C., Ma, Z. C., et al. (2014): Quasicontinuum Analysis of the Effect of Tool Geometry on Nanometric Cutting of Single Crystal Copper. Optik, 125, 682-687.
[22] Ma, Z. C., *Zhao, H. W., et al. (2013): Novel in situ device for investigating the tensile and fatigue behaviors of bulk materials. Review of Scientific Instruments, 84, 045104.
[23] Ma, Z. C., *Zhao, H. W., et al. (2013): Note: Investigation on the influences of gripping methods on elastic modulus by a miniature tensile device and in situ verification. Review of Scientific Instruments, 84, 066102.
[24] Ma, Z. C., *Zhao, H. W., et al. (2013): Novel correction methods on a miniature tensile device based on a modular non-standard layout. Measurement Science &Technology, 24, 085901.
[25] Zhang, L., *Zhao, H. W., Huang, H., Ma, Z. C., et al. (2013): The evolution of machined-induced surface of single crystal FCC copper via nanoindentation. Nanoscale Research Letters, 8, 211.
[26] Huang, H., *Zhao, H. W., Fan, Z. Q., Zhang, H., Ma, Z. C., et al. (2013): Analysis and experiments of a novel and compact 3-DOF precision positioning platform. Journal of Mechanical Science and Technology, 27, 1-11.
[27] Zhang, L., *Zhao, H. W., Ma, Z. C., et al. (2013): A Study on Size Effect of Indenter in Nanoindentation via Molecular Dynamics Simulation. Key Engineering Materials, 562-565, 802-808.
[28] Ma, Z. C., *Zhao, H. W., et al. (2012): A miniaturized in situ tensile platform under microscope. Telkomnika, 10, 524-530.
[29] Ma, Z. C., *Zhao, H. W., et al. (2012): Calibration methods based on stress-strain curve for a novel tensile platform inside SEM. Proc. 10th Int. Conf. on Frontiers of Design and Manufacturing at Chongqing, China, July 2012.
[30] Ma, Z. C., *Zhao, H. W., et al. (2012): Analysis and experiment of a novel miniature driven unit for in situ fatigue test based on tensile preload. Proc. 10th Int. Conf. on Frontiers of Design and Manufacturing at Chongqing, China, July 2012.
[31] Huang, H., Shi, C. L., *Zhao, H. W., Ma, Z. C. (2012): An Integrated Nanoindentation Module: Design and Experiments. Proc. 10th Int. Conf. on Frontiers of Design and Manufacturing at Chongqing, China, July 2012.
[32] Zhang, L., *Zhao, H. W., Huang, H., Ma, Z. C., (2012): Effects of the Deformation of Indenter in Nanoindentation–Molecular Dynamics Simulation. Proc. 10th Int. Conf. on Frontiers of Design and Manufacturing at Chongqing, China, July 2012.
[33] Zhang, L., *Zhao, H. W., Ma, Z. C., et al. (2012): A study on phase transformation of monocrystalline silicon due to ultraprecision polishing by molecular dynamics simulation. AIP ADVANCES, 2, 042116.
[34] Huang, H., *Zhao, H. W., Ma, Z. C., et al. (2012): Design and analysis of the precision-driven unit for nanoindentation and scratch test. Journal of Manufacturing Systems, 31, 76-81.
[35] Shi, C. L., *Zhao, H. W., Huang, H., Wan, S. G., Ma Z. C., et al. (2012): Effects of probe tilt on nanoscratch results: An investigation by finite element analysis, Tribology International, 60, 64-69.
[36] Huang, H., *Zhao, H. W., Zhang, Z. Y., Yang, Z. J., Ma, Z. C. (2012): Influences of Sample Preparation on Nanoindentation Behavior of a Zr-Based Bulk Metallic Glass, Materials, 5, 1033-1039.
[37] Huang, H., *Zhao, H. W., Yang, Z. J., Mi, J., Fan, Z. Q, Wan, S. G, Shi, C. L., Ma, Z. C. (2012): A novel driving principle by means of the parasitic motion of the microgripper and its preliminary application in the design of the linear actuator, Review of Scientific Instruments , 83, 055002.
[38] Huang, Hu., *Zhao, H. W., Mi, J., Yang, J., Wan, S. G., Xu, L. X., Ma, Z. C. (2012): A novel and compact nanoindentation device for in situ nanoindentation tests inside the scanning electron microscope, AIP ADVANCES , 2, 012104.
[39] Huang, H., *Zhao, H. W., Yang, Z. H., Fan, Z. Q., Wan, S. G, Shi, C. L., Ma, Z. C. (2012): Design and Analysis of a Compact Precision Positioning Platform Integrating Strain Gauges and the Piezoactuator, Sensors , 12, 9697-9710.
[40] Huang, H., *Zhao, H. W., Ma, Z. C., et al. (2011): Development of a novel nanoindentation device for in situ test in SEM, 2nd Nano today conference at Hawaii USA, 2011.
[41] Ma, Z. C., *Zhao, H. W., et al. (2011): In situ tensile test platform design and experimental research under microscopes. 9th National Doctoral Student Conference at Changsha, China, September 2011.
[42] Huang, H., *Zhao, H. W., Mi, J., Yang, J., Wan, S. G., Yang, Z. J., Yan, J. W., Ma, Z. C. et al. (2011): Experimental research on a modular miniaturization nanoindentation device, Review of Scientific Instruments , 82(9), 095101.
[43] Ma, Z. C., Hu, L. L., *Zhao, H. W., et al. (2010): Theoretical and experimental research on machine tool servo system for ultra-precision position compensation on CNC lathe. Proceedings of SPIE, (2010) 7544.
[44] Ma, Z. C., *Zhao, H. W., et al. (2016): Elastic-plastic bending properties of an AZ31B magnesium alloy based on persistent tensile preloads. Submitted to Journal of Alloys and Compounds, 708 (2017) 594-599
Monograph:
[1] Zhao, H. W., Huang, H., Ji, J.B., Ma, Z. C. (2012): Design and analysis of key components in the nanoindentation and scratch test device, as a chapter published in book "Human Musculoskeletal Biomechanics", InTech OPEN ACCESS Publisher. 185-208.
[2] Zhao, H. W., Huang, H., Fan, Z. Q., Yang, Z. J., Ma, Z. C. (2012): Design, Analysis and Experiments of a Novel in situ SEM Indentation Device, as a chapter published in book "Nanoindentation in Materials Science", InTech OPEN ACCESS Publisher. 287-308.
申请国际专利:
[1] Ma, Z. C.; Zhao, H. W., et al.: In situ mechanical testing method and system for materials subjected to static and dynamic load spectrum. Submitted as: Euro and U. S. patent (PCT/CN2016/101836, application date 12.10.2016)
[2] Zhao, H. W.; Liu, C. Y.; Ma, Z. C.; et al.: In situ testing instrument for testing mechanical-electrical-magnetic coupling properties of materials under combined loads. Submitted as: Euro and U. S. patent (PCT/CN2016/081447, application date 10.05.2016)
制定重点行业标准:
[1] 固体材料原位拉伸-弯曲复合力学性能测试系统(第一完成人)
[2] 固体材料原位拉伸仪技术规范.
授权国家发明专利:
[1] 马志超, 赵宏伟,任露泉等,压电致动型材料疲劳力学性能测试装置
[2] 马志超, 赵宏伟,任露泉等, 曲率半径可调式非球面凹透镜加工装置
[3] 马志超, 赵宏伟,任露泉等, 服役温度下材料双轴静动态性能在线测试平台
[4] 马志超, 赵宏伟,任露泉等, 复合应力下微构件高温疲劳性能测试装置
[5] 赵宏伟,马志超等,跨尺度微纳米级原位复合载荷力学能测试平台
[6] 赵宏伟,马志超等,显微镜下拉压弯复合载荷模式材料力学性能测试装置
[7] 赵宏伟,马志超等,跨尺度微纳米级原位拉伸压缩力学性能测试平台
[8] 赵宏伟,马志超等,基于拉/压模式的扫描电镜下原位高频疲劳材料力学测试平台
[9] 赵宏伟,马志超等,扫描电镜下微弧度级精度原位扭转材料力学性能测试装置
[10] 赵宏伟,马志超等,基于准静态加载的扫描电镜下原位拉/压材料力学测试平台
[11] 赵宏伟,胡晓利,马志超等,跨尺度微纳米级原位三点弯曲力学性能测试平台
[12] 赵宏伟,程虹丙,马志超等,小型试样拉弯复合加载模式材料力学性能测试平台
[13] 李海连,赵宏伟,马志超等, 一种材料力学性能测试装置
其他:
研究兴趣:
1.材料微尺度力学性能与显微结构演化的相关性;
2.仿生结构设计与制造;
3.航空叶片高温合金高温重载下的热疲劳;
与研究生合作方式:
互相尊重,合作共赢,鼓励独立创新思维;注重综合能力提升.
 
 

Copyright©2004-2013 吉林大学机械科学与工程学院 All Rights Reserved.   信息管理
学院地址:吉林省长春市人民大街5988号      电话:+86-431-85095428
建议使用Internet Explorer浏览器在1024×768或更高分辨率下浏览本站
访问统计: